Electrochemical reduction of graphene oxide (GO) on a gold microelectrode array

Vanessa N. Ataide^{*} (PG)¹, Othon S. Campos (PG)², Jairo J. Pedrotti (PQ)¹

*(vanneiva@gmail.com)

¹Mackgraphe – Graphene and Nanomaterials Research Center – Mackenzie Presbyterian University - Rua da Consolação, 896 - São Paulo, SP - CEP 01302-907.

²Chemistry Institute – University of São Paulo- Av. Lineu Prestes, 748- São Paulo, SP- CEP 05508-000.

Keywords: Graphene oxide, electrochemical deposition, gold microelectrode, impedance spectroscopy.

Abstract

This work describes an electrochemical modification of a gold microelectrode array using reduced graphene oxide (GO).

Introduction

Graphene is a nanostructured material based on sp² carbon sheets, showing excellent optical, electronic and mechanical properties¹. Then, graphene-based electrochemical sensors have great potential to be applied in several chemical compounds, and this work describes a modification of a gold microelectrode array using electrochemically reduced graphene oxide (ER-GO).

Results and Discussion

The modification target was an array of 14 gold microelectrodes², showed in Figure 1. The electrochemical reduction of graphene oxide (0.5 mg mL⁻¹) was carried out in 50 mmol L⁻¹ Na₂SO₄ solution, using ten cyclic voltammetry sweeps ($E_i = E_f$: + 1.0 V, E_{inv} : - 1.2 V vs Ag/AgCl_(KCI 3M); scan rate: 50 mV s⁻¹).

Figure 1. Microelectrode body (A) and SEM image for gold microelectrode array (B).

The ER-GO gold microelectrode array was characterized using Raman spectroscopy, which reveals both D and G peaks for graphene oxide cm⁻¹, (1338 cm⁻¹ and 1595 respectively). Electrochemical impedance spectroscopy (EIS) was also applied for studying interface the electrode/solution of microelectrode array. In Figure 3, both spectra of the non-modified microelectrode array (blue) and modified microelectrode array (black) shows significant differences between the surfaces, and the charge transfer resistance calculated for modified microelectrode array (91.8 Ω cm²) was 2.75 times lower than non-modified electrode array (252.6 Ω cm²) for [Fe(CN)₆]³⁻ /[Fe(CN)₆]⁴⁻ electrochemical reaction. Also the surface area almost doubled, from 1.66x10⁻³ cm² for non-modified electrode to 3.02x10⁻³ cm² for modified electrode.

Figure 2. Raman spectra for GO and ER-GO.

Figure 3. Electrochemical impedance spectra for non-modified microelectrode (blue) and ER-GO modified microelectrode (black).

Conclusions

The Raman spectra confirm the ER-GO onto gold microelectrodes surface. The charge transfer resistance obtained by EIS was changed for modified microelectrode if compared to non-modified electrode towards to $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ redox pair, indicating the improvement in the electrochemical performance of the modified microelectrodes.

Acknowledgments

MACKPESQUISA and FAPESP (SPEC 2015/18275-1)

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

¹ Ambrosi, A.B. et al., *Chem. Eur. J.* **2011**, 17, 10763.

² Pacheco, D.B. et al., Anal. Chim. Acta, 2011, 696, 53.